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LETTER TO THE EDITOR

Quantum Borel kinematics on three-dimensional manifolds
and knot groups

H D Doebner and W Groth
Arnold Sommerfeld Institut f̈ur mathematische Physik, 38678 Clausthal-Zellerfeld, Germany

Received 12 March 1997

Abstract. The quantizations ofn identical or distinguishable particles, which are localized on
closed orientable 3-manifolds, viewed as a three-fold branched covering ofS3 with a matching
knot chosen as branching set, are classified up to unitary equivalence. The result connects the
setη of non-equivalent quantizations to knot theory.

1. Introduction

Consider a system ofn identical or distinguishable non-relativistic particles without spin,
which are localized on a differentiable manifoldM. If the particles are distinguishable
the configuration manifoldFn is given byFn = (M × · · · ×M) − D, if the particles are
identical the effective configuration manifold is1n = ((M ×· · ·×M)−D)/Sn. D denotes
the diagonal, i.e. the set of points describing configurations where at least two particles
coincide.1n andFn are, in general, topologically non-trivial.

To quantize the system on1, i.e. with1 = 1n or 1 = Fn, a quantization method is
necessary, which incorporates the global structure ofFn and1n. The Borel quantization
[2, 8] is such a method. It is based on the generalized positionQ(f ) and momentum
operatorsP (X) modelled via functionsf ∈ C∞(1,R) and smooth (complete) vector fields
X ∈ Xc(1), respectively, for systems on arbitrary smooth manifolds1 with measureµ.
The functions and the vector fields have a natural Lie structure and span the covariance
algebraS(1):

S(1) = C∞(1,R)∈+Xc(1).

The quantization is constructed via a quantization map(Q,P ) of S(1) into the set of
self-adjoint operators on the Hilbert spaceH = L2(1,µ),

Q : C∞(1,R) 3 f −→ Q(f ) ∈ Ls(H)
P : Xc(1) 3 X −→ P (X) ∈ Ls(H)

such that: (1) the Lie structure is conserved; (2)Q(f ) is a multiplication operator; (3) to
have differential operators forP (X) one needs differential structuresD on the point set
1 × C. SuitableD are induced by a diffeomorphic (isomorphic on each fibre) mapping
from1×C onto a line bundleL = (E, pr,1,C) with total spaceE and projection pr. The
Hilbert spaceL2(1,µ) of functions is viewed as the Hilbert spaceL2(L,µ) of sections,
i.e. as the completion of the space of square integrable sections in the Hermitean linebundle
(L, 〈·, ·〉) (4). P (X) is local in the sense thatP (X)9 = 0 if supp(X) ∩ supp(9) = 0.
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Because of points (1)–(4),P (X) turns out to be a differential operator of order one
with respect toD and is realized as a covariant derivative in the Hermitean line bundle with
compatible flat connection denoted by(L, 〈·, ·〉,∇).

A classification of unitary inequivalent Borel quantizations on the manifold1 is given
by a bijective mapping onto the set

η = π∗1 (1)× R2 (1)

whereπ∗1 (1) = Hom(π1(1),U(1)) denotes the group of characters of the fundamental
groupπ1(1).

2. Application to 3-manifolds

We want to apply this classification (1) to closed orientable 3-manifoldsM.
First we give a result for1n andFn constructed from any smooth manifoldM with

dim(M) > 3. For the fundamental group ofπ1(1n) andπ1(Fn) the following holds [5]:

π1(1n) = Sn⊂×(π1(M))
n (2)

π1(Fn) = (π1(M))
n. (3)

The group multiplication inπ1(1n) has to be understood as follows, withp1, p2 ∈ Sn and
li , kj ∈ π1(M), i, j ∈ {1, . . . , n},

(p1; k1, . . . , kn)(p2; l1, . . . , ln) = (p1p2; kp2(1)l1, . . . , kp2(n)ln).

The proof of equations (2) and (3) is based on the observation that

i : π1(Fn)→ (π1(M))
n

is an isomorphism, if dim(M) > 3 and that the sequence

1→ π1(Fn)→ π1(1n)→ Sn→ 1

is splitting, if dim(M) > 3 (see [3]).
Closed orientable 3-manifoldsM are connected to knot theory. A refinement of

Alexander’s theorem [1] is given by Hilden [4] and Montesinos [7].

Theorem 2.1. (Hilden–Montesinos.) Every closed orientable 3-manifoldM is an irregular
three-fold branched covering ofS3. The branching set can be chosen as a knotK. M is
denoted byM = (S3−K)̃.

In general the three-fold irregular branched covering of a knot complementS3 − K is
not unique.

Combining the classification (1) with equation (2) and (3) and theorem (2.1) we find a
specificclassification for quantizations of particles on 3-manifolds.

Lemma 2.1. If n particles are localized on a three-dimensional closed orientable manifold
M, the set of equivalence classes of quantum Borel kinematics can bijectively be mapped
onto

η = (Sn⊂×(π1((S
3−K)̃))n)∗ × R (4)

if the particles are identical and onto

η = ((π1((S
3−K)̃))n)∗ × R (5)

if the particles are distinguishable.K is a matching knot forM.
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3. Examples

3.1. Trefoil knot

Consider two (identical) particles on those three-dimensional manifolds, which arise as
three-fold branched coverings of a trefoil knot complement. There are two different three-
fold branched coverings over the trefoil [9]. We calculate for both of themπ1 and the
unitary one-dimensional representationsπ∗1 [3].

The first three-fold covering is irregular and is homeomorphic to the sphereS3. π1(S
3) =

{e} is trivial. From the classification and equation (2) we obtain the usual symmetric
representation ofS2 corresponding to fermions and the antisymmetric representation which
corresponds to Bosons, i.e.η = {−1,+1} × R.

The second one is regular and denoted by(S3 − trefoil)̃. One obtains forπ1(S
3 −

trefoil)̃ = 〈j, k|j4 = 1, k2 = j2, kj = j3k〉 = Q the quaternion group [9] with eight
elements, i.e.|Q| = 8. The commutator subgroup is [Q,Q] = {1, j2}. The number of
one-dimensional unitary representationsUi; i ∈ {1, . . . ,4} is |Q|/|[Q,Q]| = 4. They are
listed in table 1.

Table 1. Unitary one-dimensional representations of the quaternion group.

U1(·) U2(·) U3(·) U4(·)
1 1 1 1 1
j 1 1 −1 −1
j2 1 1 1 1
j3 1 1 −1 −1
k 1 −1 1 −1
jk 1 −1 −1 1
j2k 1 −1 1 −1
j3k 1 −1 −1 1

For the setη of non-equivalent quantizations we obtain from (5) for two distinguishable
particles(|Q|/|[Q,Q]|)2 = 16 one-dimensional unitary representations corresponding to
the productsUiUj : Q×Q→ U(1), i, j ∈ {1, . . . ,4}:

η = {UiUj } × R i, j ∈ {1, . . . ,4}.
For two identical particles we get from (4)

|S2⊂×(Q×Q)|
|[S2⊂×(Q×Q), S2⊂×(Q×Q)]| =

128

16
= 8

elements inπ∗1 . If d1 denotes the symmetric representation ofS2 andd2 the antisymmetric
one, the corresponding eight one-dimensional representationsUij : S2⊂×(Q×Q)→ U(1),
i ∈ {1, 2}, j ∈ {1, 2, 3, 4}, are given byUij (p; l1, l2) = di(p)Uj (l1)Uj (l2).

η = {Uij } × R i ∈ {1, 2}, j ∈ {1, . . . ,4}.

3.2. Lens spaces

A geometrical description of lens spacesL(p, q) is given in [9]. Their fundamental groups
areπ1(L(p, q)) = Zp. The |Zp| = p one-dimensional unitary representations are given by
thep roots of unity. For two distinguishable particles, localized onL(p, q), we obtain from
(5) |Zp × Zp| = p2 inequivalent quantizations withη = { p√1} × { p√1} × R.
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For two identical particles onL(p, q) an evaluation of equation (4) gives

|S2⊂×(Zp)2|
|[S2⊂×(Zp)2, S2⊂×(Zp)2]| =

2p2

p
= 2p

inequivalent quantizations, corresponding to two one-dimensional representations ofS2 and
p representations ofZp. This givesη = {−1,+1} × { p√1} × R.

We are indebted to J D Hennig for valuable discussions. WG wants to thank the state of
Lower Saxony for financial support through the Graduiertenförderung.
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