Quantum Borel kinematics on three-dimensional manifolds and knot groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L503
(http://iopscience.iop.org/0305-4470/30/15/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:49

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Quantum Borel kinematics on three-dimensional manifolds and knot groups

H D Doebner and W Groth
Arnold Sommerfeld Institut für mathematische Physik, 38678 Clausthal-Zellerfeld, Germany

Received 12 March 1997

Abstract

The quantizations of n identical or distinguishable particles, which are localized on closed orientable 3-manifolds, viewed as a three-fold branched covering of S^{3} with a matching knot chosen as branching set, are classified up to unitary equivalence. The result connects the set η of non-equivalent quantizations to knot theory.

1. Introduction

Consider a system of n identical or distinguishable non-relativistic particles without spin, which are localized on a differentiable manifold M. If the particles are distinguishable the configuration manifold F_{n} is given by $F_{n}=(M \times \cdots \times M)-D$, if the particles are identical the effective configuration manifold is $\Delta_{n}=((M \times \cdots \times M)-D) / S_{n} . D$ denotes the diagonal, i.e. the set of points describing configurations where at least two particles coincide. Δ_{n} and F_{n} are, in general, topologically non-trivial.

To quantize the system on Δ, i.e. with $\Delta=\Delta_{n}$ or $\Delta=F_{n}$, a quantization method is necessary, which incorporates the global structure of F_{n} and Δ_{n}. The Borel quantization [2,8] is such a method. It is based on the generalized position $Q(f)$ and momentum operators $\boldsymbol{P}(X)$ modelled via functions $f \in C^{\infty}(\Delta, \mathbb{R})$ and smooth (complete) vector fields $X \in \mathcal{X}_{\mathrm{c}}(\Delta)$, respectively, for systems on arbitrary smooth manifolds Δ with measure μ. The functions and the vector fields have a natural Lie structure and span the covariance algebra $S(\Delta)$:

$$
S(\Delta)=C^{\infty}(\Delta, \mathbb{R}) \notin \mathcal{X}_{\mathrm{c}}(\Delta)
$$

The quantization is constructed via a quantization map $(\boldsymbol{Q}, \boldsymbol{P})$ of $S(\Delta)$ into the set of self-adjoint operators on the Hilbert space $\mathcal{H}=L^{2}(\Delta, \mu)$,

$$
\begin{aligned}
& \boldsymbol{Q}: C^{\infty}(\Delta, \mathbb{R}) \ni f \longrightarrow \boldsymbol{Q}(f) \in \mathcal{L}_{s}(\mathcal{H}) \\
& \boldsymbol{P}: \mathcal{X}_{\mathrm{c}}(\Delta) \ni X \longrightarrow \boldsymbol{P}(X) \in \mathcal{L}_{s}(\mathcal{H})
\end{aligned}
$$

such that: (1) the Lie structure is conserved; (2) $\boldsymbol{Q}(f)$ is a multiplication operator; (3) to have differential operators for $\boldsymbol{P}(X)$ one needs differential structures \mathcal{D} on the point set $\Delta \times \mathbb{C}$. Suitable \mathcal{D} are induced by a diffeomorphic (isomorphic on each fibre) mapping from $\Delta \times \mathbb{C}$ onto a line bundle $L=(E, \operatorname{pr}, \Delta, \mathbb{C})$ with total space E and projection pr. The Hilbert space $L^{2}(\Delta, \mu)$ of functions is viewed as the Hilbert space $L^{2}(L, \mu)$ of sections, i.e. as the completion of the space of square integrable sections in the Hermitean linebundle $(L,\langle\cdot, \cdot\rangle)(4) . \boldsymbol{P}(X)$ is local in the sense that $\boldsymbol{P}(X) \Psi=0$ if $\operatorname{supp}(X) \cap \operatorname{supp}(\Psi)=0$.

Because of points (1)-(4), $\boldsymbol{P}(X)$ turns out to be a differential operator of order one with respect to \mathcal{D} and is realized as a covariant derivative in the Hermitean line bundle with compatible flat connection denoted by $(L,\langle\cdot, \cdot\rangle, \nabla)$.

A classification of unitary inequivalent Borel quantizations on the manifold Δ is given by a bijective mapping onto the set

$$
\begin{equation*}
\eta=\pi_{1}^{*}(\Delta) \times \mathbb{R}_{2} \tag{1}
\end{equation*}
$$

where $\pi_{1}^{*}(\Delta)=\operatorname{Hom}\left(\pi_{1}(\Delta), U(1)\right)$ denotes the group of characters of the fundamental group $\pi_{1}(\Delta)$.

2. Application to 3-manifolds

We want to apply this classification (1) to closed orientable 3-manifolds M.
First we give a result for Δ_{n} and F_{n} constructed from any smooth manifold M with $\operatorname{dim}(M) \geqslant 3$. For the fundamental group of $\pi_{1}\left(\Delta_{n}\right)$ and $\pi_{1}\left(F_{n}\right)$ the following holds [5]:

$$
\begin{align*}
& \pi_{1}\left(\Delta_{n}\right)=S_{n} \otimes\left(\pi_{1}(M)\right)^{n} \tag{2}\\
& \pi_{1}\left(F_{n}\right)=\left(\pi_{1}(M)\right)^{n} . \tag{3}
\end{align*}
$$

The group multiplication in $\pi_{1}\left(\Delta_{n}\right)$ has to be understood as follows, with $p_{1}, p_{2} \in S_{n}$ and $l_{i}, k_{j} \in \pi_{1}(M), i, j \in\{1, \ldots, n\}$,

$$
\left(p_{1} ; k_{1}, \ldots, k_{n}\right)\left(p_{2} ; l_{1}, \ldots, l_{n}\right)=\left(p_{1} p_{2} ; k_{p_{2}(1)} l_{1}, \ldots, k_{p_{2}(n)} l_{n}\right)
$$

The proof of equations (2) and (3) is based on the observation that

$$
i: \pi_{1}\left(F_{n}\right) \rightarrow\left(\pi_{1}(M)\right)^{n}
$$

is an isomorphism, if $\operatorname{dim}(M) \geqslant 3$ and that the sequence

$$
1 \rightarrow \pi_{1}\left(F_{n}\right) \rightarrow \pi_{1}\left(\Delta_{n}\right) \rightarrow S_{n} \rightarrow 1
$$

is splitting, if $\operatorname{dim}(M) \geqslant 3$ (see [3]).
Closed orientable 3-manifolds M are connected to knot theory. A refinement of Alexander's theorem [1] is given by Hilden [4] and Montesinos [7].

Theorem 2.1. (Hilden-Montesinos.) Every closed orientable 3-manifold M is an irregular three-fold branched covering of S^{3}. The branching set can be chosen as a knot $K . M$ is denoted by $M=\left(S^{3}-K\right)$.

In general the three-fold irregular branched covering of a knot complement $S^{3}-K$ is not unique.

Combining the classification (1) with equation (2) and (3) and theorem (2.1) we find a specific classification for quantizations of particles on 3-manifolds.

Lemma 2.1. If n particles are localized on a three-dimensional closed orientable manifold M, the set of equivalence classes of quantum Borel kinematics can bijectively be mapped onto

$$
\begin{equation*}
\eta=\left(S_{n} \otimes\left(\pi_{1}\left(\left(S^{3}-K\right) \tilde{)}\right)\right)^{n}\right)^{*} \times \mathbb{R} \tag{4}
\end{equation*}
$$

if the particles are identical and onto

$$
\begin{equation*}
\eta=\left(\left(\pi_{1}\left(\left(S^{3}-K\right) \tilde{)}\right)^{n}\right)^{*} \times \mathbb{R}\right. \tag{5}
\end{equation*}
$$

if the particles are distinguishable. K is a matching knot for M.

3. Examples

3.1. Trefoil knot

Consider two (identical) particles on those three-dimensional manifolds, which arise as three-fold branched coverings of a trefoil knot complement. There are two different threefold branched coverings over the trefoil [9]. We calculate for both of them π_{1} and the unitary one-dimensional representations π_{1}^{*} [3].

The first three-fold covering is irregular and is homeomorphic to the sphere $S^{3} . \pi_{1}\left(S^{3}\right)=$ $\{e\}$ is trivial. From the classification and equation (2) we obtain the usual symmetric representation of S_{2} corresponding to fermions and the antisymmetric representation which corresponds to Bosons, i.e. $\eta=\{-1,+1\} \times \mathbb{R}$.

The second one is regular and denoted by $\left(S^{3}-\right.$ trefoil $)$. One obtains for $\pi_{1}\left(S^{3}-\right.$ trefoil $)^{\sim}=\left\langle j, k \mid j^{4}=1, k^{2}=j^{2}, k j=j^{3} k\right\rangle=Q$ the quaternion group [9] with eight elements, i.e. $|Q|=8$. The commutator subgroup is $[Q, Q]=\left\{1, j^{2}\right\}$. The number of one-dimensional unitary representations $U_{i} ; i \in\{1, \ldots, 4\}$ is $|Q| /|[Q, Q]|=4$. They are listed in table 1.

Table 1. Unitary one-dimensional representations of the quaternion group.

	$U_{1}(\cdot)$	$U_{2}(\cdot)$	$U_{3}(\cdot)$	$U_{4}(\cdot)$
1	1	1	1	1
j	1	1	-1	-1
j^{2}	1	1	1	1
j^{3}	1	1	-1	-1
k	1	-1	1	-1
$j k$	1	-1	-1	1
$j^{2} k$	1	-1	1	-1
$j^{3} k$	1	-1	-1	1

For the set η of non-equivalent quantizations we obtain from (5) for two distinguishable particles $(|Q| /|[Q, Q]|)^{2}=16$ one-dimensional unitary representations corresponding to the products $U_{i} U_{j}: Q \times Q \rightarrow U(1), i, j \in\{1, \ldots, 4\}$:

$$
\eta=\left\{U_{i} U_{j}\right\} \times \mathbb{R} \quad i, j \in\{1, \ldots, 4\} .
$$

For two identical particles we get from (4)

$$
\frac{\left|S_{2} \otimes(Q \times Q)\right|}{\left|\left[S_{2} \otimes(Q \times Q), S_{2} \otimes(Q \times Q)\right]\right|}=\frac{128}{16}=8
$$

elements in π_{1}^{*}. If d_{1} denotes the symmetric representation of S_{2} and d_{2} the antisymmetric one, the corresponding eight one-dimensional representations $U_{i j}: S_{2} \otimes(Q \times Q) \rightarrow U(1)$, $i \in\{1,2\}, j \in\{1,2,3,4\}$, are given by $U_{i j}\left(p ; l_{1}, l_{2}\right)=d_{i}(p) U_{j}\left(l_{1}\right) U_{j}\left(l_{2}\right)$.

$$
\eta=\left\{U_{i j}\right\} \times \mathbb{R} \quad i \in\{1,2\}, \quad j \in\{1, \ldots, 4\}
$$

3.2. Lens spaces

A geometrical description of lens spaces $L(p, q)$ is given in [9]. Their fundamental groups are $\pi_{1}(L(p, q))=\mathbb{Z}_{p}$. The $\left|\mathbb{Z}_{p}\right|=p$ one-dimensional unitary representations are given by the p roots of unity. For two distinguishable particles, localized on $L(p, q)$, we obtain from (5) $\left|\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right|=p^{2}$ inequivalent quantizations with $\eta=\{\sqrt[p]{1}\} \times\{\sqrt[p]{1}\} \times \mathbb{R}$.

For two identical particles on $L(p, q)$ an evaluation of equation (4) gives

$$
\frac{\left|S_{2} \otimes\left(\mathbb{Z}_{p}\right)^{2}\right|}{\left|\left[S_{2} \otimes\left(\mathbb{Z}_{p}\right)^{2}, S_{2} \otimes\left(\mathbb{Z}_{p}\right)^{2}\right]\right|}=\frac{2 p^{2}}{p}=2 p
$$

inequivalent quantizations, corresponding to two one-dimensional representations of S_{2} and p representations of \mathbb{Z}_{p}. This gives $\eta=\{-1,+1\} \times\{\sqrt[p]{1}\} \times \mathbb{R}$.

We are indebted to J D Hennig for valuable discussions. WG wants to thank the state of Lower Saxony for financial support through the Graduiertenförderung.

References

[1] Alexander J W 1920 Bull. Am. Math. Soc. 26370
[2] Angermann B, Doebner H D and Tolar J 1984 Lecture Notes in Math. 1037171
[3] Groth W 1996 Dissertation TU Clausthal
[4] Hilden H M 1976 Am. J. Math. 98989
[5] Imbo T D, Imbo C S and Sudershan E C G 1990 Phys. Lett. 234B 1-2 Imbo T D, Imbo C S and Sudershan E C G 1990 Phys. Lett. 234B 103
[6] Kostant B 1970 Lecture Notes in Math. 17087
[7] Montesinos J 1974 Bull Am. Math Soc. 80845
[8] Mueller U A and Doebner H-D 1993 J. Phys. A: Math. Gen. 26719
[9] Rolfsen D 1976 Math Lecture Series vol 7 (Publish or Perish)

